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Abstract 

In this paper a model for the calculation of the admittance (reciprocal impedance) of a 
porous metal electrode is derived, under anodic constant-current conditions, during pre- 
cipitation of an insohrble salt at the metal/electrolyte interface. An example of the discharge, 
at low current dens&y, of the negative plate in a leadisulphuric acid battery during which 
lead sulphate is formed. The discussion is based on the assumption that porosity has a 
self-similar fractal character. The impedance of fractal electrodes will be discussed in terms 
of geometrical and physical parameters. 

Introduction 

The use of porous electrodes has proved to be essential for many applications. 
Examples are manyfold: gas-diffusion electrodes (e.g., fuel cells); electrodes for battery 
applications (e.g., positive and negative plate of lead/acid cells), and electrodes for 
the removal of trace amounts of heavy metal impurities in waste-water treatment, etc. 
(e.g., carbon felt, granulate, fibers). In all these applications, the true interfacial 
electrode area is much larger than the apparent (geometrical) electrical area, which 
makes the space-time yield for the electrode reaction, of interest, much higher. The 
processes at porous electrodes have been described using many different mathematical 
approximations [l-7]. In this paper we will focus our attention on the well-known 
lead/lead sulphate system, i.e., a porous lead electrode that is discharged at constant 
current, at low current density, in sulphuric acid with the resulting formation of lead 
sulphate. The impedance of the lead/lead sulphate system in sulphuric acid is composed 
of four parameters, described in parts 1 and 2 of this series [8, 91; the charge-transfer 
resistance, RF, for the formation of lead ions, the Warburg impedance due to the 
diffusion of lead sulphate, the differential double-layer capacitance, Cd, and the 
crystallization resistance, Rk, due to the slow precipitation of lead sulphate. 

Literature evaluation 

Different models have been postulated for describing the porous interface (e.g., 
transmission line model [l], flooded agglomerate model [3], self-similar fractal roughness 
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model [10-171. At porous electrodes, the parameters to be evaluated are both physical 
and geometrical. The possibility to extract the geometrical parameters from electro- 
chemical measurements will be discussed first. The description of the system lead/ 
lead sulphate in sulphuric acid, in case of a porous electrode, will be discussed in 
the context of the so-called self-similar roughness concept, as introduced by le MehautC 
and CrCpy [lo], which has subsequently been adopted and elaborated by several authors 
[2, 6, 11-14, 171. Very recently, Mulder [17] published a paper in which the influence 
of self-similar fractal roughness on the electrode admittance was quantitatively discussed 
for several cases involving both diffusion and adsorption. One case, which is of special 
interest, is the admittance spectrum for a d.c. reversible reaction at a fractal electrode. 
For this case the framework presented in ref. 17 for deriving the equation for the 
electrode admittance in case of fractal surface roughness can be used. 

It has been shown [2, 171 that the electrode admittance, Yei, at a fractal electrode 
per unit of apparent surface area generally can be written as: 

Y&W) = a’ar-?*(iU) (1) 

where W’ is a geometry factor, u the solution conductivity, LJ a number with a value 
between l/2 and 1 and constant over a wide range of frequencies, and y(iw) is the 
specific electrode admittance. The fractal or Hausdorff dimension, Dn, of the electrode 
is related to 5 via [ll]: 

5= l/(&r - 1) (2) 

In particular, this means that t= 1 for DH= 2 (perfectly smooth surface). 
The rate equation, which relates the faradaic-current density to the surface 

concentration of the electroactive species and the potential of the electrode, is used 
to derive the faradaic part of y(io) via Ajr =yr(&, - 4) where 45, - 4 is the local complex 
amplitude of the a.c. potential drop across the double layer. In order to get the total 
current density we have to add to this a contribution due to charging and discharging 
of the double layer, equal to Ajc =iwC,,(+,,- 4). The expression for Aj = Ajr+ Ajc can 
then be rewritten as: 

Aj/+,, =y( 1 - 4’) (3) 

with y=i&+yr and 4’ = +/&, the local deviation of the electrostatic potential just 
outside the double layer from the d.c. value, normalized with respect to the amplitude 
of the a.c. signal. 

The local particle flux amplitude Ajd towards or away from a fractal surface can 
be written in terms of the local interfacial concentration fluctuation, AcS, as [14, 173: 

Ajd= _Q-l~l-lfZ(i,)ln<&~ 
(4) 

where Q is an average ,local geometry factor and D the diffusion coefficient. 
The deviation from the stationary surface concentration, cS, can then be found 

by combining eqn. (4) with the rate equation. 
In the final expression for Y&o) for an electrode which displays self-similar 

roughness three geometry factors appear: 5, Q and u’. In ref. 17 it was shown that 
in principle these three geometrical parameters as well as the total interfacial area, 
An, can be derived from a.c. impedance measurements. 

Theory 

The processes accompanying the anodic dissolution of lead in sulphuric acid are 
schematically represented in Fig. 1. 
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Fig. 1. Schematic representation of the process involved in the formation of lead sulphate if 
recrystallization is assumed to be the rate-determining step. 

In deriving the rate equation for the system lead/lead sulphate in sulphuric acid, 
the mathematical description of the process of metal deposition can be used, if surface 
diffusion of adatoms is assumed to be rate determining [18]. 

The rate equation can be derived as follows. If we assume that dissolution at a 
surface coverage 0 only proceeds at the uncovered surface, the dissolution-current 
density, jdiss, at the bare surface is given by: 

jdh=jo exp(l - 8117 (5) 

where 77 = (nF/Z?T)(&, - 4), & - C#J is the local deviation from the equilibrium potential 
drop across the interface, 1 - p is the transfer coefficient for anodic dissolution (0 <p < 1) 
and j0 is the exchange current density. Equation (5) is valid only for 0-=~ 1. 

The deposition current, j&p, depends on the average surface concentration, c,, of 
lead sulphate. If co represents the equilibrium concentration of lead sulphate, then 
]dep is given by: 

jdep =jO(cskO) exp( - 87) (6) 

The net current density, jF, (at l- 6) is given by: 
. . . 

h=Jdiss -Jdep=~OhJ(l - @“I - @s/CO) exP( - @“/)I =jO exP( - h)[eq(?7) -cs/cOl 

At small departure from equilibrium eqn. (7) can be linearized: 

AjF = jO(Av - Ac,Ico) 

(7) 

(8) 

where AC, =c, -co and Aq = (rzF/ZZT)(&,- c$) is proportional to the local (complex) 
amplitude of the a.c. signal. This equation was derived before by Rybalka and co- 
workers 119-211. 

Equation (7) is now used to obtain the first-order perturbation AjF: 

AjF=j&l - @AT exp[(I - Phi + PAT exp( - P4 - @C&O) exp( - LWI (9) 

Before hF can be made explicit, Act, must be solved using Fick’s laws. The flux equation 
for the process depicted in Fig. 1 is given by [18, 191: 

Aj&F = kAc, - D(abc/&~), = kAc, - Ajd (10) 

where k is the rate constant for the formation and dissolution of lead sulphate and 
a/av is the derivative at the interface taken along a unit vector v normal to the surface, 
pointing towards the solution, and n = 2. Furthermore, it is assumed that the precipitate 
formation is a first-order process in the concentration of lead sulphate. 

Inserting eqn. (3) into eqn. (10) leads to: 

AC, = [k + Q-lD1-‘“*(iw)ln*]-l Aj,/nF (11) 

Now AC, can be introduced in the expression for AjF (eqn. (9)) which gives rise to 
the following equation: 
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P + (cJco)(l - P) 

AjF=RF-l (Cs/~o)B+(jo/&o)/(~+Q-l~‘-‘“P(~w)’nS) (d-‘o-4) 
(12) 

where RF = (RT/nF)/jo. 
Equation 12 can be simplified using c,/co = 1 (small d.c.-overpotential). This results 

in (c,/c~)~ = 1 and p + (1 - ~)c,/co = 1 (only true for local equilibrium, so for d.c.-reversible 
reduction). The expression for Ajr then reduces to: 

hjF=RF-1[l+(jo/~~C~)/(k+Q-1~1-1”5(iW)1’2*)]-1(~-~) (13) 

The net local current density amplitude Aj is equal to bJ,+ AjF. The specific 
interfacial admittance, using eqns. (1) and (3), then reads: 

y(iw) = [Y,,(io)/(a’ar -c)]l’* = i&Z,, +RF-’ [l + (jo/nFco)/(k + Q- ‘D’- lRS(io)l”‘)]-l 

= idI?, + a/[ 1 + b/( 1 + c(iw)lnr)] (14) 

where C, is the differential double-layer capacitance, a =RF-‘, b=jo/(rzFcok) and 
c = D’ - mEJQk. Identifying Rk with RT/n*F*c,k, parameter b eqUakRk/RF. The geometrical 
parameters are u’, Q and 6. The physical parameters are Cd, RF, k and D. Of the 
geometrical parameters 5 is obtained most easily by constant phase element (CPE) 
measurements for it is related to the constant phase angle, ry, by a! = &r/2 [lo]. It has 
been shown [17] that both u’ and Q as well as the total ‘true’ interfacial area can 
be obtained using only a.c. measurements. The value of a’ is obtained from measurements 
with a d.c.-reversible couple like Fe(III)[CN],3-/Fe(II)[CN164- as described in ref. 17. 
Once the geometrical parameters are known, the physical parameters can be found 
from linear fitting procedures [8]. 

Procedure for obtaining the physical parameters 

The analysis of eqn. (14) will be outlined below. We can distinguish two limiting 
cases: 

(i) w-t0 
In this case y(h) becomes: 

y(iwL - 0 =a/(1 +b) (15) 

From this complex plane diagram for y” versus y’, a/(1 + b) is found as the intercept 
with the real axis. 

In this limit y(h) approaches the asymptote: 

y(iw),- m =itdCd+u (16) 

From the complex plane diagram a is found as the intercept of this asymptote with 
the real axis. From both limits of w the values of u,b and Cd are found. On the other 
hand, in order to find c it is necessary to perform a one-parameter fit. A linear relation 
is obtained using the expression: 

b[u/(y(iw) - ioCd) - 11-l = 1+ c(io)ln6 (17) 

Once Q is known, k is calculated c. Also,‘the exchange current density, jo, is obtained 
from the value of b. 

The dependence of the electrode impedance, Zel, on the fractal dimension of the 
electrode: 
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Z,,=Z’ -iZ”a (i&+al[l +b/(l +c(iw)‘n*)])-* (18) 

can be studied using fixed values of C,, a, b and c and varying 5 between l/2 and 1. 
In the case of a smooth electrode (m’ =Q= t= 1) a, b, c and C, are obtained directly 
without the need to evaluate geometry parameters first. 

D.c. reversible case 

A simplification can be made assuming a -’ = RF=O(j,,-+ m ). This results in: 

Z,,a{iwCd+Rk-l[(l+c(i~)‘R~)]}-~ (19) 

The parameter Rk contains the value of k which is essential for understanding 
the expander action. 

t 

01 

0 
0 

(a) @I 
1 

E 

i 

L OO 
(cl (4 
Fig. 2. Complex plane representation of eqn. (21) for p=O, 0.2, 0.5, 1, 2, and 16 (from top to 
bottom, respectively). Curves are drawn for (a) e=l (perfectly smooth electrode), (b) 5=0.83, 
(c) 5=0.67, and (d) &=O.S (completely porous electrode). Also curves of constants w’ are depicted 
with values as indicated. 
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Fig. 3. Complex plane representation of eqn. (21) for 5= 1, 0.83, 0.67 and 0.5. Curves are drawn 
for (a) p=O, (b) p=O.2 and (c) p+ 00. In diagram (a) and (b) also lines of constant o’ values 
are indicated, corresponding to (from left to right) 0’=20, 10, 5, 3, 2, 1.5, 1, 0.8, 0.6 and 0.4. 

The value of RI, can be found from the value of Z,, in the low-frequency limit 
in which case: 

(a’c+‘-Sz,,(iw),_31’Z=R~ (20) 

In the case of d.c.-reversibility Z,, can be resealed to the form: 

Z,, a [l +iw’ -tp(i~‘)‘“~]-’ (21) 

where w’ = (RTC,,/n*F*c,k)o = RkCdo andp = Q-‘(n2F2co/RTCd)‘ns(D/k)1-‘“5. The lim- 
iting cases for eqn. (21) are: 1 for w’ -+O and 0 for w’ + Q). 

In Figure 2(a)-(d) we have plotted Z,i for .$= 1.0, 0.83, 0.67 and 0.5. The a.c. 
frequency was varied between 10-i’ to 1015 Hz. The values for p taken were p = 0, 
0.2, 0.5, 1, 2, and 10’. In each diagram (Fig. 2(a)-(c)) also lines of constant o’ values 
are indicated, corresponding to (from left to right) w’ =5, 2, 1.25, 0.8, 0.4 and 0.1. 

In the case of (=0.5 eqn. (21) simplified to the form Zela (1 +~cJ)-‘~ where 
w”=@+l)w’, one curve is found independent of the value of p. For t= 1 (smooth 
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surface) and p = 0 we find a semi-circle while for p + m a quarter-circle is found. The 
main difference in the impedance behaviour found is the change of the shape of the 
semi-circle for [= 1, p=O to a distorted semi-circle (lemniscate) for 1/2<5< 1, and 
the merging of all curves when [-, l/2. 

In Fig. 3 we have plotted the complex plane representation for t=l, 0.83, 0.67 
and 0.5 for constant values of p (p = 0, p = 0.2 and p + 03). In this plot, for p = 0 and 
p=O.2, lines of constant w’ values are drawn which represent the variation of the 
impedance for different 5 values and constant p. 

Conclusions 

A.c. impedance measurements can provide us with both the physical and geometrical 
parameters related to the discharge process of a porous lead electrode in sulphuric 
acid. 

In the condition of a d.c.-reversible reaction the analysis is simplified. This condition 
holds for the discharge reaction of lead to lead sulphate in sulphuric acid. 

In order to make the analysis of the impedance feasible, additional a.c. measurements 
are necessary to obtain Q’, Q and 6. These measurements must be made at the same 
fractal electrode surface. 
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List of symbols 

l/R, 
Rk& 
D' - ln6iQk 
surface concentration 
first-order deviation from surface concentration 
equilibrium concentration 
differential double-layer capacitance 
diffusion coefficient 
Hausdorff dimension 
Faraday constant 

imaginary unit J-i 
exchange-current density 
total current density 
double-layer part of current density 
local particle flux amplitude 
faradaic part of current density 
crystallization rate constant 
number of electrons transferred 
average local geometry factor 
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R 
RF 
& 
T 

Y 
Y,l 
-&I 
Z' 
Z" 

gas content 
charge-transfer resistance 
crystallization resistance 
absolute temperature 
specific electrode admittance 
electrode admittance 
electrode impedance 
real part of impedance 
imaginary part of impedance 

Greek letters 

; 

constant phase angle 
transfer coefficient 

e fractional surface coverage 

2 
(nFIRT)(+o- 4) 
l/(D, - 1) CPE exponent 

Zl 

potential amplitude just outside the double layer 
amplitude of applied a.c. signal 

u solution conductivity 
(T’ geometry factor 
v unit vector 
w angular frequency 
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